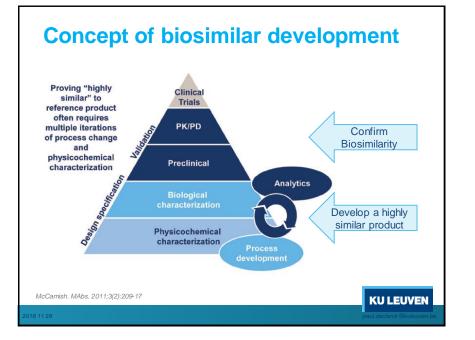
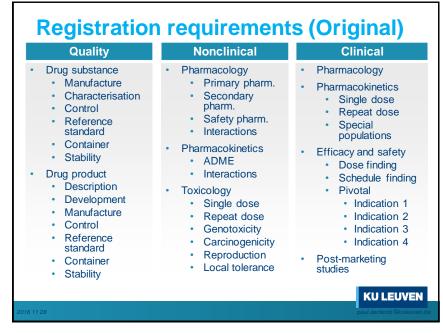
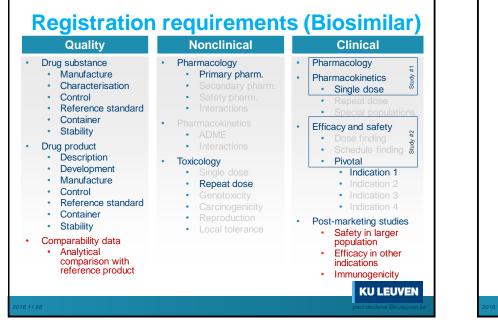
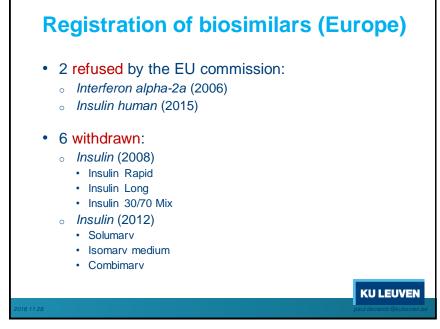

Molecular basis of heterogeneity					
 Glycosylation Phosphorylation Sulfation Methylation N-acylation S-Nitrosylation 	 Deamidation (e.g. Asn to Asp) Racemization (L to D) Oxidation (Met, Tyr, His, Trp) Disulfide exchange 				
 cell type and culture conditions 	 External conditions (pH, additives, temperature) 				
> 10 ⁸ variants					
	KU LEUVEN				


- p)
-))


The process determines the product





Why refused?

Solumarv (human insulin)

- · Insufficient details on manufacturing process
- Insufficiently demonstrated whether clinical study batches are representative for market batches
- Insufficiently shown that quality of proposed biosimilar is comparable to the reference product

From European Public Assesment Report Solumarv®

KU LEUVEN

Why refused?

Alpheon (Interferon alfa-2a)

- Differences with reference product (e.g. impurities)
- Not enough data on stability
- Inadequate validation of process to make the finished drug product
- · Lower efficacy
- More side effects
- Inadequately validated test to evaluate the potential to trigger an immunological response

```
From European Public Assesment Report Alpheon®
```

Registration of biosimilars (Europe)

- 28 approved in Europa (11/2016)
 - o 2 Human growth hormone (2006)
 - o 3 Epoietin alfa (2007)
 - 。 2 Epoietin zeta (2007)
 - o *9 Filgrastim* (2008 (4), 2009 (2), 2010, 2013, 2014)
 - o 3 Infliximab (2013 (2), 2016)
 - o 2 Follitropin alfa (2013, 2014)
 - o 2 Insulin glargine (2014, 2016)
 - o 1 Etanercept (2016)
 - o 2 Enoxaparin(2016)
 - o 2 Teriparatide (2016)

Registration of biosimilars (Europe)

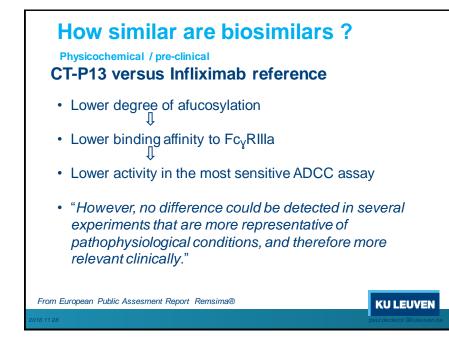
- 16 under review (11/2016)
 - o 2 Etanercept
 - o 2 Rituximab
 - o 4 Pegfilgrastim
 - o 3 Adalimumab
 - o 1 Insulin glargine
 - o 3 Trastuzumab

KU LEUVEN

• 1 Insulin Lispro

Physicochemical Comparability Tests: Analytics Set the Foundation

Test Method	Compares	Test Method	Compares		
Amino acid analysis	Amino acid composition	Purity/Impurity			
Peptide mapping	Peptide coverage and chemical	SEC-HPLC	Aggregate content and monomeric purity		
LC-MS) in modifications		CE-SDS (reduced/nonreduced)	Electrophoretic mobility and purity under nonreducing and reducing conditions		
MS/MS		Charged Isoforms			
Peptide mapping (HPLC)	Tryptic peptide map by visual inspection	IEF	Isoelectric point(s)		
N-terminal	N-terminal sequences	IEC-HPLC	Charge variant distribution		
sequencing	0.4	Glycosylation			
C-terminal sequencing	C-terminal sequences	Sialic acid analysis	Sialic acid content		
Reduced mass	Molecular weights by mass spectrometry	Monosaccharide analysis	Neutral and amino sugar composition		
Disulfide bonds	Disulfide bonds location	Oligosaccharide	Glycosylation pattern (eg,G0F, G1F, G2F)		
Free thiol analysis	Amount of free sulfhydryl groups	N-linked glycan	Oligosaccharide structures, attachment sites, and distribution		
FTIR	Secondary structures	analysis			
			Content		
CD	Secondary structure	UV ₂₈₀	Protein concentration		
DSC	Thermal stability; also determines thermal transition temperatures	ELISA	API content		
6 11 28			paul.declerck@kuleuven.		


Biochemical and functional Comparability Tests

- Binding to target
- Binding to
 - FcyRI, FcyRII, FcyRIII
 - FcRn
 - \circ C1q

- Fab-associated functions (neutralization, activation, ...)
- Fc-associated functions (ADCC, CDC, complement activation, ...)

Biosimilar ESA (*)	<u>Biosimilar hGH (*)</u>	Biosimilar IFX (*)				
 "<u>Differences</u> were observed at the glycosylation level" "Phosphorylated high mannose type structures were detected at higher levels there is Plevels 	 "The results of this study demonstrate that Biosimilar rhGH produced at full scale is <u>comparable</u> to Reference Product" "The impurity profile of Biosimilar hGH shares some 	" all major physicochemical characteristics and biological activities of biosimilar IFX were <u>comparable</u> to those of the reference product" " <u>difference</u> in the amount of				
 levels than in Reference ESA" "Lower values on N- glycolyl-neuramic acid and diacetylated neuramic acids as compared to Reference ESA" "Peptide map showed differences in O- linked glycan due to a higher sialylation and lower content of the oxidized variant" 	 Biosimilar nGH shares some similarity with Reference hGH; however the profiles are <u>not identical</u>" " impurities, , are present in the Biosimilar hGH batches and are not in any Reference hGH batches" "Additionally, there appears to be a <u>higher</u> level of deamidated variants in the Biosimilar hGH samples" 	afucosylated infliximab, translating into a lower binding affinity towards FcyRIIla receptors and a lower ex vivo antibody-dependent cellular cytotoxicity (ADCC) activity" • " <u>less</u> intact IgG, mainly due to a higher proportion of non-assembled form unlikely to impact its biological activity" • "a higher level of C-terminal lysine variability" • "slightly higher aggregates"				
Biosimilars are Similar, not identical						

How similar are biosimilars ?

Physicochemical / pre-clinical SB2 versus Infliximab reference

- Lower degree of C-Lys variants (
 CHO versus SP2/0
 host cell)
- Lower % of charged variants
- Higher % of High Molecular Weight variants
- Higher binding affinity to Fc_yRIIIa (114-141% vs. 77-108%) but without impact on ADCC assay

From European Public Assesment Report Flixabi®

KU LEUVEN

How similar are biosimilars ?

Immunological events SB2 versus Infliximab reference

- Higher incidence of ADA formation in patients (47 % vs. 38 % at day 71)
- Impact of ADA on efficacy is not clear (CHMP: Divergent opinion 14/36 negative)
- Data from studies in presence of MTX → extrapolation of immunogenicity to other indications?

From European Public Assesment Report Flixabi®

The undersigned members of the CHMP did not agree with the CHMP's positive opinion recommending the granting of a marketing authorisation of Flixabi as a biosimilar to Remicade and in the indications licensed to Remicade.

The reason for the divergent opinion was the following:

- Flixabi appears to be associated with a higher incidence of ADA than the originator, Remicade. It is
 acknowledged that it cannot be excluded that the observed difference was a chance finding or a finding
 associated with limitations in the immunogenicity assays that were used. However, an increased incidence
 was observed both in the Phase 1 and the Phase 3 studies, and it has not been substantiated that the
 difference was an artefact due to for example problems with the interpretation with the immunogenicity
 assays that were used.
- In the Phase 3 trial, which was conducted in patients with rheumatoid arthritis, the efficacy of Flixabil whilst
 meeting the pre-specified equivalence margins, was consistently, although not universally, estimated to be
 lower than that of Remicade. It is not possible with reasonable certainty to exclude that the estimated
 reduction in efficacy of Flixabi was the result of the higher incidence of ADA. In this regard, it is noteworthy
 that the Phase 3 study showed that the efficacy, regardless of treatment group, was significantly lower in
 ADA positive patients than in ADA negative patients.
- Since the patients with rheumatoid arthritis investigated in the Phase 3 trial are treated concomitantly with
 immunomodulator therapy, they may exhibit less immunogenicity than patients in other infliximab-licensed
 indications. The consequences of any difference on ADA incidence, and consequently the impact on efficacy
 in these indications are unclear.
- · It is considered that the uncertainties outlined above should be resolved by the Applicant before licensing.
- The proposal by the Applicant to resolve the concerns related to immunogenicity in the post-marketing setting by initiating a prospective observational cohort study in the indications of ankylosing spondylitis and Crohn's disease is considered inadequate. In addition, it is questionable to what extent a non-randomised, observational study can provide data that will effectively address the uncertainties.

In conclusion, the undersigned CHMP members consider the benefit-risk balance of Flixabi to be negative since biosimilarity to Remicade has not been established.

How similar are biosimilars ?

Physicochemical / pre-clinical SB4 versus Etanercept reference

- Lower degree of C-Lys variants (⇐ CHO versus SP2/0 host cell ?)
- · Differences in charged variants
- Higher degree of afucosylation (considered not clinically relevant because not involved in Mode of Action)
- Slightly less effective in a mouse model of arthritis (*not confirmed in clinical studies*)

From European Public Assesment Report Benepali®

How similar are biosimilars ?

Immunological events

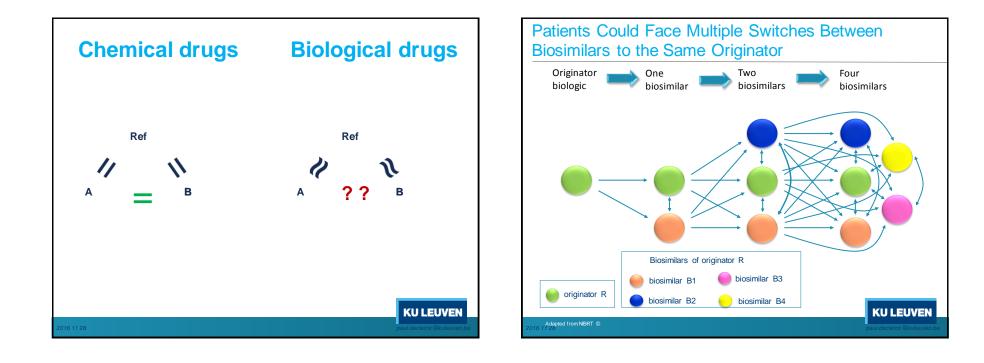
SB4 versus Etanercept reference

- Significantly lower incidence of ADA formation in patients (overall 1 % vs. 13 % at wk 52)
- Reanalysis excluding wk 4 and 8: 0.3 vs. 0.7%
- Impact of assay methodology –low drug tolerance: data affected by trough levels, the latter were different at wk 4/8, thus reanalysis after excluding ADA data at wk 4/8
- ".... it is premature to conclude that SB4 is less immunogenic than reference"

From European Public Assesment Report Benepali®

KU LEUVEN

How similar are biosimilars ?


Adverse events

XM17 and Afolia versus FSH reference

	Study XM17		Study Afolia	
	Reference (n=145)	XM17 (n=152)	Reference (n=123)	Afolia (n=249)
Ovarian Hyperstimulation Syndrome (OHSS)	2.7%	4.6%	13 %	32 %

"..... The following parameters [dose, oestradiol,body weight, age] were comparable..... and cannot explain the difference that is observed in OHSS. The observed difference could therefore be a chance finding. " (European Public Assessment Report Ovaleap®)

From European Public Assesment Report Ovaleap® and Bemfola®	KU LEUVEN
16 11 28	paul.declerck@kuleuven.be

Biological drugs

- Substitution/switching is contraindicated
- Physician control over prescribing
- Appropriate (brand)naming required
- International pharmacovigilance systems should be imposed that enable unambiguous identification of the product associated with an adverse event

KU LEUVEN

Conclusions

- The concept for biosimilar development is well-defined
- The process for approval is rigorous
- Pharmaceutical quality of approved biosimilar is guaranteed
- Differences in quality attributes are always present
- Major challenges include the identification of the potential clinical relevance of differences in quality attributes and non-clinical properties

Conclusions

- Residual uncertainties (scientifically or statistically) have so far always been deemed to have no impact on safety and efficacy
- EPARs contain heterogenous information not consistent between different biosimilars for the same reference product
- To date, (multiple) switching between a reference and its respective biosimilars can not be recommended since no solid scientific data are available